Counting Spanning Trees∗

نویسندگان

  • Bang Ye Wu
  • Kun-Mao Chao
چکیده

This book provides a comprehensive introduction to the modern study of spanning trees. A spanning tree for a graph G is a subgraph of G that is a tree and contains all the vertices of G. There are many situations in which good spanning trees must be found. Whenever one wants to find a simple, cheap, yet efficient way to connect a set of terminals, be they computers, telephones, factories, or cities, a solution is normally one kind of spanning trees. Spanning trees prove important for several reasons:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

Counting and Constructing Minimal Spanning Trees

We revisit the minimal spanning tree problem in order to develop a theory of construction and counting of the minimal spanning trees in a network. The theory indicates that the construction of such trees consists of many di erent choices, all independent of each other. These results suggest a block approach to the construction of all minimal spanning trees in the network, and an algorithm to th...

متن کامل

Counting Spanning Out-trees in Multidigraphs

This paper generalizes an inclusion/exclusion counting formula of Temperley for the number of spanning trees of a graph based on its complement. The new formula is for the number of out-trees of a digraph which may have multiple arcs. This provides an extension of Temperley's formula to graphs with multiple edges. Determining which graphs have a maximum number of spanning trees is important for...

متن کامل

from Foundations of Markov chain Monte

The aim of this course is to address the complexity of counting and sampling problems from an algorithmic perspective. Typically we will be interested in counting the size of a collection of combinatorial structures of a graph, e.g., the number of spanning trees of a graph. We will soon see that this style of counting problem is intimately related to the sampling problem which asks for a random...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005