Counting Spanning Trees∗
نویسندگان
چکیده
This book provides a comprehensive introduction to the modern study of spanning trees. A spanning tree for a graph G is a subgraph of G that is a tree and contains all the vertices of G. There are many situations in which good spanning trees must be found. Whenever one wants to find a simple, cheap, yet efficient way to connect a set of terminals, be they computers, telephones, factories, or cities, a solution is normally one kind of spanning trees. Spanning trees prove important for several reasons:
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملCounting and Constructing Minimal Spanning Trees
We revisit the minimal spanning tree problem in order to develop a theory of construction and counting of the minimal spanning trees in a network. The theory indicates that the construction of such trees consists of many di erent choices, all independent of each other. These results suggest a block approach to the construction of all minimal spanning trees in the network, and an algorithm to th...
متن کاملCounting Spanning Out-trees in Multidigraphs
This paper generalizes an inclusion/exclusion counting formula of Temperley for the number of spanning trees of a graph based on its complement. The new formula is for the number of out-trees of a digraph which may have multiple arcs. This provides an extension of Temperley's formula to graphs with multiple edges. Determining which graphs have a maximum number of spanning trees is important for...
متن کاملfrom Foundations of Markov chain Monte
The aim of this course is to address the complexity of counting and sampling problems from an algorithmic perspective. Typically we will be interested in counting the size of a collection of combinatorial structures of a graph, e.g., the number of spanning trees of a graph. We will soon see that this style of counting problem is intimately related to the sampling problem which asks for a random...
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کامل